Diesel exposure characterisation in a case-control study of lung cancer

Nils Plato

ICOH Scientific Committee Industrial Hygiene

Division of Occupational- and Environmental Medicine, Department of Public Sciences, Karolinska Institutet, Stockholm, Sweden

Department of Occupational and Environmental Health, Stockholm Centre for Public Health, Stockholm, Sweden

Stockholm Centre for Public Health

Stockholm

Map data © 2008 DMapas/El Mercurio © 2008 Tele Atlas © 2008 Europa Technologies Image NASA

Pointer 36°26'01.08" N 64°08'29.26" E

Streaming |||||||| 100%

©2007 Google™

Eye alt 19011.59 km

Exposure assessment (E.A.)

Why E.A.?

- Different aims for E.A
- Control TLV/OEL (monitoring)
- Evaluation of improvments (control)
- Data for risk assessment (epidemiology)

E.A. Strategy

- Individual/group
- Present; (effect in the future) strategy, variability
- Past; (true effect today) evaluation, reconstruction
- Generalization (in epidemiology) individual => group => occupation

E.A. Black box

- We don't have the absolute truth
- Limitations, errors, simplifications=> Misclassification of exposure
- Factors to deal with in a case-control study of diesel exhaust and lungcancer

Exposure assessment

General aim:

 Criteria for possible changing of OEL (Occupational Exposure Limit) for diesel exhaust

E.A.

LUng CAncer in Stockholm LUCAS

- Population based case-control study
- 1,042 lung cancer cases
- 2,364 controls
- Several exposures e.g diesel exhaust

E.A.

Diesel engine exhaust:

- Several hundreds of chemicals
- Gases
- Particles
- Depends of: Vihecle, fuel, engine, load, time gradienty

DME = diesel motor emmission

E.A. Diesel exhaust

Diesel engine exhaust classified as probably carcinogenic to humans (group 2A) by International Agency on Research of Cancer (IARC), 1989

E.A Model

Industrial hygiene process

- 1. Selection step
- 2. Measuring step
- 3. Reconstruction step (JEM)
- 4. Occupational adapting step
- 5. Analysis

Flow chart for IH process in LUCAS

- 1. Selection step
- Expert team (n=3)
- 3404 subjects => 15,000 occupational periods 1945-95
- Coded on occupations 5-digit (ISCO68) and industry 5-digit (ISIC Rev 2)
- Quality insurance
- Identified 1,000 occupational periods for 47 different DME exposed occupations

2. Measuring step; Current level

- Identify apropiate DME surregates
- Choise of measuring methods and strategy
- 18 occupations measured, 90 subjects á 3 days
- Exposure level, variability and how different occupation relates to each other
- Today presented by Dr Marie Lewné
- E.g. bus garage workers (in 2003)

Exposure levels, (year 2003) Bus garage workers

- $46 \,\mu g/m^3$ • PM₁
- 105 µg/m³ • PM₂₅
- DataRAM
- 147 μ<u>g</u>/m³ • EC (elementary carbon) $22 \,\mu g/m^3$
- TC (total carbon)
- NO_2

49 μ g/m³ 240 $\mu g/m^3$

3. Past level

- Reconstruction step
- JEM, job-exposure matrice
- Modelling for 3 occupations
- Construction of exposure curves 1945-1995 for EC and NO₂
- Data sources: Old measurements, other knewledge
- Data on fuel, engines, load, vihecles etc.

4. Adapting step

- Expert team, n=5
- Emanate from the 3 occupational curves in No. 3
- Adop the 47 occupations by correction factors
- E.g. Busgarage level = 5.4 x cars garage exposure level for EC in year 2003

Correction factors

1.3

- Bus garage workers 5.3 Railway engine work shop 4.2 1.0
- Car mechanics
- Garage workers

Flow chart for IH process in LUCAS

Summary

- Total DME characterization in epi time and resource consuming
- Total 3404 subjects were DME exposure assessed in a lung cancer study
- EC and NO₂, DME surrogares
- Highers exposure levels during the 1970s
- Worst in tunnel construction activity = mining
- In a semi-quantitative earlier study DME doseresponse relationship to lung cancer
- Now we will have the level, before summer 2008

Thanks

- Per Gustavsson (PI)
- Marie Lewné
- Eva Lenell
- Magnus Alderling
- Gunilla Klingspetz
- Leif Johansson
- Mats Levin
- Anna Klepczynska
- Carolina Bigert
- Håkan Westberg